Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Braz J Cardiovasc Surg ; 37(1): 35-47, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-2311398

ABSTRACT

INTRODUCTION: Severe coronavirus disease 2019 (COVID-19) is characterised by hyperinflammatory state, systemic coagulopathies, and multiorgan involvement, especially acute respiratory distress syndrome (ARDS). We here describe our preliminary clinical experience with COVID-19 patients treated via an early initiation of extracorporeal blood purification combined with systemic heparinisation and respiratory support. METHODS: Fifteen patients were included; several biomarkers associated with COVID-19 severity were monitored. Personalised treatment was tailored according to the levels of interleukin (IL)-6, IL-8, tumour necrosis factor alpha, C-reactive protein (CRP), neutrophil-to-lymphocyte ratio, thrombocyte counts, D-dimers, and fibrinogen. Treatment consisted of respiratory support, extracorporeal blood purification using the AN69ST (oXiris®) hemofilter, and 300 U/kg heparin to maintain activation clotting time ≥ 180 seconds. RESULTS: Ten patients presented with severe to critical disease (dyspnoea, hypoxia, respiratory rate > 30/min, peripheral oxygen saturation < 90%, or > 50% lung involvement on X-ray imaging). The median intensive care unit length of stay was 9.3 days (interquartile range 5.3-10.1); two patients developed ARDS and died after 5 and 26 days. Clinical improvement was associated with normalisation (increase) of thrombocytes and white blood cells, stable levels of IL-6 (< 50 ng/mL), and a decrease of CRP and fibrinogen. CONCLUSION: Continuous monitoring of COVID-19 severity biomarkers and radiological imaging is crucial to assess disease progression, uncontrolled inflammation, and to avert irreversible multiorgan failure. The combination of systemic heparin anticoagulation regimens and extracorporeal blood purification using cytokine-adsorbing hemofilters may reduce hyperinflammation, prevent coagulopathy, and support clinical recovery.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Heparin/therapeutic use , Humans , Intensive Care Units , Respiratory Distress Syndrome/therapy , SARS-CoV-2
2.
Front Genet ; 13: 892682, 2022.
Article in English | MEDLINE | ID: covidwho-2141768

ABSTRACT

Trends from around the world suggest that the omicron BA.2 subvariant is increasing in proportion to the original BA.1 subvariant. Here we report two cases of co-infection with omicron BA.1 and omicron BA.2 in co-exposed individuals. In both individuals, genome sequencing and/or S-gene specific PCR identified omicron BA.1 at early time-points, which was replaced by omicron BA.2 at later time-points of the infection. The timeline of our data supports the proposition that BA.2 outcompetes BA.1 in a real-life scenario, and in time becomes the dominant variant in the upper respiratory tract of the host.

3.
Frontiers in genetics ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1812739

ABSTRACT

Trends from around the world suggest that the omicron BA.2 subvariant is increasing in proportion to the original BA.1 subvariant. Here we report two cases of co-infection with omicron BA.1 and omicron BA.2 in co-exposed individuals. In both individuals, genome sequencing and/or S-gene specific PCR identified omicron BA.1 at early time-points, which was replaced by omicron BA.2 at later time-points of the infection. The timeline of our data supports the proposition that BA.2 outcompetes BA.1 in a real-life scenario, and in time becomes the dominant variant in the upper respiratory tract of the host.

4.
Braz J Cardiovasc Surg ; 37(1): 35-47, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-895827

ABSTRACT

INTRODUCTION: Severe coronavirus disease 2019 (COVID-19) is characterised by hyperinflammatory state, systemic coagulopathies, and multiorgan involvement, especially acute respiratory distress syndrome (ARDS). We here describe our preliminary clinical experience with COVID-19 patients treated via an early initiation of extracorporeal blood purification combined with systemic heparinisation and respiratory support. METHODS: Fifteen patients were included; several biomarkers associated with COVID-19 severity were monitored. Personalised treatment was tailored according to the levels of interleukin (IL)-6, IL-8, tumour necrosis factor alpha, C-reactive protein (CRP), neutrophil-to-lymphocyte ratio, thrombocyte counts, D-dimers, and fibrinogen. Treatment consisted of respiratory support, extracorporeal blood purification using the AN69ST (oXiris®) hemofilter, and 300 U/kg heparin to maintain activation clotting time ≥ 180 seconds. RESULTS: Ten patients presented with severe to critical disease (dyspnoea, hypoxia, respiratory rate > 30/min, peripheral oxygen saturation < 90%, or > 50% lung involvement on X-ray imaging). The median intensive care unit length of stay was 9.3 days (interquartile range 5.3-10.1); two patients developed ARDS and died after 5 and 26 days. Clinical improvement was associated with normalisation (increase) of thrombocytes and white blood cells, stable levels of IL-6 (< 50 ng/mL), and a decrease of CRP and fibrinogen. CONCLUSION: Continuous monitoring of COVID-19 severity biomarkers and radiological imaging is crucial to assess disease progression, uncontrolled inflammation, and to avert irreversible multiorgan failure. The combination of systemic heparin anticoagulation regimens and extracorporeal blood purification using cytokine-adsorbing hemofilters may reduce hyperinflammation, prevent coagulopathy, and support clinical recovery.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Heparin/therapeutic use , Humans , Intensive Care Units , Respiratory Distress Syndrome/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL